



# **PROYECTO Nº 4: Esquivar obstáculos**

Aprende a crear un programa para que cuando el sensor de ultrasonidos del Code&Drive detecte un objeto o superficie plana a menos de 25 cm delante de sí, encienda los LEDs, se mueva hacia atrás y gire para esquivarlo. Una vez que haya esquivado el objeto, seguirá su recorrido en línea recta.

NIVEL DE DIFICULTAD: Intermedio.

DURACIÓN DEL EJERCICIO: 40 min.

MATERIALES:



- 1 LED Verde.
- 1 LED Rojo.
- 1 Sensor de Ultrasonido.
- 2 motores con sus ruedas.
- 1 Cable USB micro USB
- Ordenador

El kit Code&Drive deberá estar montado de acuerdo a las instrucciones indicadas en el manual.

# ¿Qué es un sensor de ultrasonido?

El sensor de ultrasonido es un dispositivo para medir la distancia. Su funcionamiento consiste en enviar un pulso de sonido a alta frecuencia, no audible por el ser humano. Este pulso rebota en los objetos cercanos y es reflejado hacia el sensor, que dispone de un micrófono adecuado para esta frecuencia.

Midiendo el tiempo entre pulsos y conociendo la velocidad del sonido, podemos estimar la distancia del objeto, en cuya superficie impactó el impulso de ultrasonido.



Sensor de ultrasonido

## CONEXIONES:

- 1. Conecta los LEDs a los pines digitales "9" y "10".
- 2. Conecta el sensor de ultrasonido a los pines digitales "12" y "13".
- 3. Conecta los motores DC al conector gris de la placa Build&Code 4in1.

Recuerda que el cable rojo debe ir en las conexiones "A01" y "B01", y el negro en las conexiones "A02" y "B02".

# CÓDIGO DE PROGRAMACIÓN

Puedes realizar esta actividad utilizando los *software* Arduino y Bitbloq, además de otros *software* de programación por bloques compatibles. A continuación encontrarás el código de programación



necesario.

#### Código Arduino

- 1. Descarga el software Arduino y realiza en proceso de instalación.
- 2. Abre el programa Arduino y, una vez en él, copia el siguiente programa:

```
int PinSpeedMA = 5, PinSpeedMB = 6; // PIN DIGITAL PARA LA
VELOCIDAD DE LOS MOTORES
int PinTurnMA = 4, PinTurnMB = 7; // PIN DIGITAL PARA SENTIDO DE
GIRO DE LOS MOTORES
int TrigPin = 13; // PINES DEL SENSOR ULTRASONIDOS
int EchoPin = 12;
float SSound = 0.0343; //VELOCIDAD DEL SONIDO EN cm/us
long Lengh, Distance ; // VARIABLES PARA CALCULAR LA DISTANCIA EN
CM
int PinLED1 = 9, PinLED2 = 10; // PIN DIGITAL LED1 Y LED2
void setup() {
  // put your setup code here, to run once:
  //CONFIGURACIÓN DE LOS PUERTOS DIGITALES
  pinMode(PinSpeedMA, OUTPUT);
  pinMode(PinSpeedMB, OUTPUT);
  pinMode(PinTurnMA, OUTPUT);
  pinMode(PinTurnMB, OUTPUT);
  pinMode(TrigPin, OUTPUT);
  pinMode(EchoPin, INPUT);
  pinMode(PinLED1, OUTPUT);
  pinMode(PinLED2, OUTPUT);
  // VELOCIDAD DE LOS MOTORES DE 100 A 255
  analogWrite(PinSpeedMA, 175);
  analogWrite(PinSpeedMB, 175);
}
void loop() {
  // put your main code here, to run repeatedly:
 DistanceCM(); // LLAMAR A LA FUNCIÓN PARA CALCULAR LA DISTANCIA
  if (( Distance < 25) && ( Distance > 1)) // SI LA DISTANCIA ES
ENTRE 1 Y 25cm
    {
      digitalWrite(PinLED1,HIGH);//LED1 Y LED2 = ON
      digitalWrite(PinLED2,HIGH);
      digitalWrite(PinTurnMA, HIGH);// CODE&DRIVE HACIA ATRÁS
      digitalWrite(PinTurnMB, LOW);
      delay(1000);
```



```
digitalWrite(PinTurnMA, HIGH);// GIR0 DEL CODE&DRIVE
      digitalWrite(PinTurnMB, HIGH);
      delay(1000);
    }
   else
    {
      digitalWrite(PinLED1,LOW);// LED1 Y LED2 = OFF
      digitalWrite(PinLED2,LOW);
      digitalWrite(PinTurnMA, LOW); // CODE&DRIVE HACIA DELANTE
      digitalWrite(PinTurnMB, HIGH);
    }
}
void DistanceCM()// FUNCIÓN DE CÁLCULO DE DISTANCIA
{
  // CALCUL DE LA DISTANCIA EN cm
  digitalWrite(TrigPin, LOW);
                                    // Nos aseguramos de que el
trigger está desactivado
  delayMicroseconds(4);
                                    // Para asegurarnos de que el
trigger está LOW
  digitalWrite(TrigPin, HIGH);
                                    // Activamos el pulso de
salida
  delayMicroseconds(14);
                                    // Esperamos 10µs. El pulso
sique active este tiempo
  digitalWrite(TrigPin, LOW);
                                    // Cortamos el pulso y a
esperar el ECHO
  Lengh = pulseIn(EchoPin, HIGH) ; //pulseIn mide el tiempo que
pasa entre que el pin declarado (echoPin) cambia de estado bajo a
alto (de 0 a 1)
  Distance = SSound* Lengh / 2; // CÁLCULO DE LA DISTANCIA
}
```

#### Código para software de programación por bloques compatible

- 1. Descarga el software y realiza en proceso de instalación.
- 2. Abre el programa y, una vez en él, copia el siguiente código:



| fija     | r pin PWM (6) a (100) VELOCIDAD DE LOS MOTORES A 100 DE 255                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| í<br>iia | r pin PWM (5 a 1007)                                                                                                       |
| 00       | r siempre                                                                                                                  |
| ſ        | zi 🖉 lee el sensor ultrasónico tria nin 13 echo nin 12 Z 25 👷 lee el sensor ultrasónico tria nin 13 echo nin 12 S 1 entono |
| ľ        |                                                                                                                            |
|          | fijar salida pin digital 🧿 a ALTOY 🕒 Encender Leds                                                                         |
|          | fijar salida pin digital 10 a ALTOY                                                                                        |
|          | fijar salida pin digital 7 a BAJOY CODE&DRIVE HACIA ATRAS                                                                  |
|          | fijar salida pin digital 4 a ALTO                                                                                          |
|          | esperar 1 segundos - ESPERA DE 1 SEGUNDO                                                                                   |
|          | fijar salida pin digital 7 a (ALTO) 🕨 CODE&DRIVE GIRANDO                                                                   |
|          | fijar salida pin digital 4 a (ALTO)                                                                                        |
|          | esperar 1 segundos ESPERA DE 1 SEGUNDO                                                                                     |
|          | si no                                                                                                                      |
|          | fijar salida pin digital 🧿 a BAJOY 🕨 Apagar los Leds.                                                                      |
|          | fijar salida pin digital 10 a BAJOY                                                                                        |
|          | fijar salida pin digital 7 a (ALTOY) CODE&DRIVE HACIA DELANTE                                                              |
|          | fiar salida nin digital (4 a BAIO)                                                                                         |

- 3. Configura y carga el código, siguiendo las instrucciones indicadas en la <u>guía de Primeros</u> <u>Pasos del Code&Drive</u>.
- 4. Revisa que el interruptor BLT/USB de la placa controladora Build&Code 4in1 está en posición USB, para una correcta carga del código.

## Código Bitbloq

- 1. <u>Descarga el software Bitbloq</u> y realiza el proceso de instalación.
- 2. Abre el programa mBlock y, una vez en él, copia el siguiente código:
  - Hardware







- 3. Configura y carga el código, siguiendo las instrucciones indicadas en la <u>guía de Primeros</u> <u>Pasos del Code&Drive</u>.
- 4. Revisa que el interruptor BLT/USB de la placa controladora Build&Code 4in1 esté en posición USB, para una correcta carga del código.

## **RESULTADO DEL EJERCICIO**

El Code&Drive se moverá hacia delante y cuando el sensor de ultrasonido detecte un objeto a menos de 25 cm, encenderá los LEDs, retrocederá durante 1 segundo y dará la vuelta durante 1 segundo. Luego, comprobará que no haya ningún obstáculo, apagará los LEDs y seguirá su recorrido hacia delante.