
Adafruit PN532 RFID/NFC Breakout and Shield
Created by Ladyada

2
5
6
6
9
9
9

11
11
11
11
11
12
12
12
12
12
13
14
14
14
14
15
15
15
16
17
17
17
17

Guide Contents

Guide Contents
Overview
Breakout Wiring

Wiring the Breakout for SPI
Shield Wiring

Using the Adafruit NFC Shield with I2C
Using with the Arduino Leonardo
Arduino Library

Which Library?
I2C Library FOR USE WITH THE SHIELD ONLY
SPI Library FOR USE WITH THE BREAKOUT BOARD ONLY
Testing MiFare

About NFC
NFC (Near Field Communication)
Passive Communication: ISO14443A Cards (Mifare, etc.)
Active Communication (Peer-to-Peer)
NFC Data Exchange Format (NDEF)
Reading

MiFare Cards & Tags
MiFare Classic Cards
EEPROM Memory
4 Block Sectors
16 Block Sectors
Accessing EEPROM Memory
Note on Authentication
Example of a New Mifare Classic 1K Card
MiFare Ultralight Cards
EEPROM Memory
Lock Bytes (Page 2)
OTP Bytes (Page 3)

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 2 of 33

17
17
18
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
22
22
22
22
22
22
23
24
26
26
26
26
26
26

Data Pages (Page 4-15)
Accessing Data Blocks
Read/Write Lengths

About the NDEF Format
NDEF (NFC Data Exchange Format)
NDEF Messages
NDEF Records
Record Header (Byte 0)
Type Length
Payload Length
ID Length
Record Type
Record ID
Payload
Well-Known Records (TNF Record Type 0x01)
URI Records (0x55/'U')
Test Records
Smart Poster Records
Example NDEF Records
Using Mifare Classic Cards as an NDEF Tag
Mifare Application Directory (MAD)
Mifare Application Directory 1 (MAD1)
Mifare Application Directory 2 (MAD2)
MAD Sector Access
Storing NDEF Messages in Mifare Sectors
TLV Blocks
Memory Dump of a Mifare Classic 1K Card with an NDEF Record
NDEF Records

Using with LibNFC
Using the PN532 Breakout Boards with libnfc

libnfc In Linux (Ubuntu 10.10 used in this example)
Step One: Download libnfc
Step Two: Configure libnfc for PN532 and UART
Step Three: Build and install libnfc

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 3 of 33

26
27
27

27

27
29
33

Step Four: Check for installed devices
Step Five: Poll for an ISO14443A (Mifare, etc.) Card

libnfc With Mac OSX Lion
Download and build libnfc and configure if for PN532 UART (making the code changes
above before running make):
If everything worked out, switch to the examples folder and see if you can find the
PN532 and wait for an appropriate tag:

FAQ
Downloads

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 4 of 33

Overview

Hey! So this is not a full tutorial, its just a quickstart guide while we do more research into
RFID/NFC. There's a lot of info here but not everything is explained in detail. We hope to fill out
the tutorial but there's not a lot of good information about NFC so it's taking a bit of time!

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 5 of 33

Breakout Wiring

This part of the tutorial is specifically for the Breakout board. We show how to use it with SPI.
The breakout also supports TTL serial and I2C but we don't have a tutorial for using it that way
as SPI is the most cross-platform method to communicate

If you're using the shield, check the next page

Wiring the Breakout for SPI
The PN532 chip and breakout is designed to be used by 3.3V systems. To use it with a 5V
system such as an Arduino, a level shifter is required to convert the high voltages into 3.3V. If
you have a 3.3V embedded system you won't have to use the shifter of course!

To begin, we'll solder in the header to the breakout board. You'll need two small 3-pin pieces of
header and one 8-pin piece. You can break these off of a large piece.

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 6 of 33

Solder the two small pieces to the SEL0 and SEL1 pads. These are interface selectors for the
chip. Depending on how the jumpers are inserted the chip will talk in TTL serial, i2c or SPI. Also
solder a strip to the end so you can plug it into a breadboard.

Wire up the 4050 level shifter chip to the Arduino as shown. The notch in the 4050 is at the 'top'
in this image.

Arduino digital pin 2 is connected to 4050 pin 9 (orange wire)
Arduino digital pin 3 is connected to 4050 pin 11(yellow wire)
Arduino digital pin 4 is connected to 4050 pin 14 (green wire)

On the breakout board

3.3Vin is connected to the Arduino 3.3V pn
SCK is connected to 4050 pin 10 (orange wire)
MISO is connected to Arduino pin 5 (blue wire)
MOSI is connected to 4050 pin 12 (yellow wire)
SSEL is connected to 4050 pin 15& (green wire)
GND connects to Arduino ground (black wire)

Also connect 4050 pin #1 to 3.3V and pin #8 to ground.

Click to see a larger image. The red power wire should be connected to the 3.3v pin on the
Arduino!

Also, we need to select SPI as the interface so on SEL1 place the jumper in the ON position.
for SEL0 place the jumper in the OFF position.

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 7 of 33

That's it! Later on you can change what Arduino pins you are using but for the beginning test we
suggest matching our wiring.

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 8 of 33

Shield Wiring

Using the Adafruit NFC Shield with I2C
The Adafruit NFC shield is designed to be used using the I2C by default. I2C only uses two pins
(Analog 4 and 5 which are fixed in hardware and cannot be changed) to communicate and one
pin as an 'interrupt' pin (Digital 2 - can be changed however). What is nice about I2C is that it is a
'shared' bus - unlike SPI and TTL serial - so you can put as many sensors as you'd like all on the
same two pins, as long as their addresses don't collide/conflict. The Interrupt pin is handy
because instead of constantly asking the NFC shield "is there a card in view yet? what about
now?" constantly, the chip will alert us when a NFC target comes into the antenna range.

The shield is drop-in compatible with any Classic Arduino (UNO, Duemilanove, Diecimilla, etc
using the ATmega168 or '328) as well as any Mega R3 or later.

Mega R2 Arduinos work as well but you need to solder a wire from the
 (http://adafru.it/aUS)SDA (http://adafru.it/aUS)
and (http://adafru.it/aUS)SCL (http://adafru.it/aUS) pin holes to the Mega's I2C pins on
Digital #20 and #21 (http://adafru.it/aUS)

Using with the Arduino Leonardo

Here are some photos of setting the IRQ pin to digital 6. First, use a sharp hobby knife to cut
the trace from IRQ to 2

Solder a wire from IRQ to #6

The IRQ pin is tied to Digital pin #2 by default. However, on the Arduino Leonardo,The IRQ pin is tied to Digital pin #2 by default. However, on the Arduino Leonardo,
digital #2 is used for I2C which will not work. If using with a Leonardo, cut the tracedigital #2 is used for I2C which will not work. If using with a Leonardo, cut the trace
beween the IRQ pin and Digital #2 and solder a wire from IRQ pin to Digital #4 orbeween the IRQ pin and Digital #2 and solder a wire from IRQ pin to Digital #4 or
higher. Then change the example code so the the IRQ pin is declared as the new pinhigher. Then change the example code so the the IRQ pin is declared as the new pin
(say #6) not #2(say #6) not #2

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 9 of 33

http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 10 of 33

Arduino Library

Which Library?
We have two libraries (hopefully will be merged into one shortly) for the Adafruit NFC boards.
One library is for SPI interfacing and one is for I2C. Both have the same functionality, capability
and function names they just differ in whether they talk to the PN532 chip with I2C or with SPI.
For the breakout, we assume you'll be using the SPI library. For the shield, we assume you'll be
using the I2C library.

Both libraries have the ability to read MiFare cards, including the hard-coded ID numbers, as well
as authenticate and read/write EEPROM chunks

I2C Library FOR USE WITH THE SHIELD ONLY
Download the PN532 I2C library from github (http://adafru.it/aSx). Uncompress the folder and
rename the folder Adafruit_NFCShield_I2C. Inside the folder you should see the
Adafruit_NFCShield_I2C.cpp and Adafruit_NFCShield_I2C.h files. Install
theAdafruit_NFCShield_I2C library foler by placing it in your
arduinosketchfolder/libraries folder. You may have to create the libraries subfolder if
this is your first library. You can read more about installing libraries in our
tutorial (http://adafru.it/aHr).

Restart the Arduino IDE. You should now be able to select File > Examples >
Adafruit_NFCShield_I2C > readMifare sketch. Upload the sketch to your Arduino with the
shield plugged in.

SPI Library FOR USE WITH THE BREAKOUT BOARD ONLY
Download the PN532 SPI library from github. (http://adafru.it/aSx) Uncompress the folder and
rename the folder Adafruit_PN532. Inside the folder you should see the
Adafruit_PN532.cpp and Adafruit_PN532.h files. Install the Adafruit_PN532 library foler
by placing it in your arduinosketchfolder/libraries folder. You may have to create the
libraries subfolder if this is your first library. You can read more about installing libraries in our
tutorial (http://adafru.it/aHr).

Restart the Arduino IDE. You should now be able to select File > Examples >
Adafruit_PN532 > readMifare sketch. Upload the sketch to your Arduino wired as in our
tutorial

Testing MiFare
In the serial monitor, you should see that it found the PN532 chip. Then you can place your tag
nearby and it will display the 4 byte ID code (this one is 0xAE 0x4C 0xF0 0x6C) and then the
integer version of all four bytes together. You can use this number to identify each card.
Recently NXP made so many cards that they actually ran through all 4 Bytes (2^32) so the
number is not guaranteed to be absolutely unique. However, the chances are extremely slim
you will have two cards with the same ID so as long as you aren't using these cards for anything
terribly important (like money transfer) its fine to use the number as a unique identifier

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 11 of 33

http://www.ladyada.net/products/rfidnfc/download.html
http://www.ladyada.net/library/arduino/libraries.html
http://www.ladyada.net/products/rfidnfc/download.html
http://www.ladyada.net/library/arduino/libraries.html

About NFC

NFC (Near Field Communication)
NFC (Near Field Communication) is a set of short-range (typically up to 10cm) wireless
communication technologies designed to offer light-weight and secure communication
between two devices. While NFC was invented by NXP (Phillips at the time), Nokia and Sony, the
main body behind the NFC 'standard' today is the NFC Forum (http://adafru.it/aSy), who are
responsible for publishing and maintaining a variety of standards relating to NFC technology.

NFC operates at 13.56MHz, and is based around an "initiator" and "target" model where the
initiator generates a small magnetic field that powers the target, meaning that the target does
not require a power source. This means of communication is referred to as Passive
Communication, and is used to read and write to small, inexpensive 13.56MHz RFID tags
based on standards like ISO14443A. Active communication (peer-to-peer) is also possible
when both devices are powered, where each device alternately creates its own magentic field,
with the secondary device as a target and vice versa in continuous rotation.

Passive Communication: ISO14443A Cards (Mifare, etc.)
While the PN53x family of transceivers from NXP are compatible with a number of 13.56MHz
RFID card standards, by far the most popular standard is ISO14443A. A variety of manufacturers
produce ISO14443A compatible cards or chips, but the most common are based around the
Mifare family from NXP. Mifare Classic and Mifare Ultralight are probably the most frequently
encountered and useful for basic projects, though many tags with improved security and
encryption also exist (Mifare DESFire, etc.). All of the tags sold at adafruit.com are Mifare Classic
1K, meaning that they contains 1K (1024 bytes) of programmable EEPROM memory which can
be read and modified in passive mode by the initiator device (the PN532).

While all ISO14443A cards share certain common characteristics on the highest level (defined
by the four part standard), each set of Mifare chips (Classic, Ultralight, Plus, DESFire, etc.) has
it's own features and peculiarities. The two most common formats are described below.

Mifare Classic (http://adafru.it/aSz): These cards are extremely common, and contain 1K or
4K of EEPROM, with basic security for each 64 byte (1K/4K cards) or 256 byte (4K cards)
sector.
Mifare Ultralight (http://adafru.it/aSz) : Contains 512 bytes of EEPROM, including 32-bits of
OTP memory. These tags are inexpensive, often come in sticker format and are are
frequently used for transportation ticketing, concert tickets, etc.

Active Communication (Peer-to-Peer)
Active or "Peer-to-Peer" communication is still based around the Initiator/Target model
described earlier, but both devices are actively powered and switch roles from being an
Initiator or a Target during the communication. When one device is initiating a conversation with
the other, it enables it's magnetic field and the receiving device listens in (with it's own
magnetic field disabled). Afterwards, the target/recipient device may need to respond and will
in turn activate it's own magnetic field and the original device will be configured as the target.
Despite two devices being present, only one magnetic field is active at a time, with each
device constantly enabling or disabling its own magnetic field.

ToDo: Add better description of active mode, but I need to test it out a bit first myself!

NFC Data Exchange Format (NDEF)
The NFC Data Exchange Format (NDEF) is a standardised data format that can be used to
exchange information between any compatible NFC device and another NFC device or tag. The
data format consists of NDEF Messages and NDEF Records. The standard is maintained
by the NFC Forum and is freely available for consultation but requires accepting a license
agreement to download (http://adafru.it/aSA).

The NDEF format is used to store and exchange information like URIs, plain text, etc., using a
commonly understood format. NFC tags like Mifare Classic cards can be configured as NDEF
tags, and data written to them by one NFC device (NDEF Records) can be understood and
accessed by any other NDEF compatible device. NDEF messages can also be used to
exchange data between two active NFC devices in "peer-to-peer" mode. By adhering to the
NDEF data exchange format during communication, devices that would otherwise have no
meaningful knowledge of each other or common language are able to share data in an
organised, mutually understandable manner.

The NDEF standard includes numerous Record Type Definitions (RTDs) that define how
information like URIs should be stored, and each NDEF device, tag or message can contained
multiple RTDs. Standard RTD definitions are described in "NFC Record Type Definition (RTD)
Specification” maintained by the NFC Forum.

* NDEF Overview (http://adafru.it/aSB) : This page offers a more detailed explanation of NDEF,
including how Mifare Classic cards can be used to store NDEF messages.

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 12 of 33

http://www.nfc-forum.org/home/
http://www.ladyada.net/wiki/tutorials/products/rfidnfc/mifare.html
http://www.ladyada.net/wiki/tutorials/products/rfidnfc/mifare.html
http://www.nfc-forum.org/specs/spec_list/
http://www.ladyada.net/wiki/tutorials/products/rfidnfc/ndef.html

NOTE: The dedicated NDEF page is still a work in progress and some information is currently
incomplete.

Reading
For more details about NFC/RFID and this chip we suggest the following fantastic resources:

RFID selection guide (http://adafru.it/aSC) - a lot of details about RFID in general
Nokia's Introduction to NFC (http://adafru.it/aSD)- a lot of details about NFC in general
NXP S50 chip datasheet (http://adafru.it/aSE) , the chip inside MiFare classic tags
NXP PN532 Short Form Datasheet (http://adafru.it/aSF)
NXP PN532 Long Form Datasheet (http://adafru.it/aSG)
NXP PN532 User Manual (http://adafru.it/aSH)
NXP PN532 App Note (http://adafru.it/aSI)
Using PN532 with libnfc (http://adafru.it/aSJ)

NFC Glossary (http://adafru.it/aSK)

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 13 of 33

http://www.adafruit.com/datasheets/rfid guide.pdf
http://www.adafruit.com/datasheets/Introduction_to_NFC_v1_0_en.pdf
http://www.adafruit.com/datasheets/S50.pdf
http://www.adafruit.com/datasheets/pn532ds.pdf
http://www.adafruit.com/datasheets/pn532longds.pdf
http://www.adafruit.com/datasheets/pn532um.pdf
http://www.adafruit.com/datasheets/PN532C106_Application Note_v1.2.pdf
http://www.microbuilder.eu/Blog/11-02-19/Using_libnfc_with_the_PN532_Linux.aspx
http://www.nfc-research.at/index.php?id=40

MiFare Cards & Tags

MiFare is one of the four 13.56MHz card 'protocols' (FeliCa is another well known one) All of the
cards and tags sold at the Adafruit shop use the inexpensive and popular MiFare Classic
chipset

MiFare Classic Cards
MIFARE Classic cards come in 1K and 4K varieties. While several varieties of chips exist, the two
main chipsets used are described in the following publicly accessible documents:

MF1S503x Mifare Classic 1K data sheet (http://adafru.it/aSL)
MF1S70yyX MIFARE Classic 4K data sheet (http://adafru.it/aSM)

Mifare Classic cards typically have a 4-byte NUID that uniquely (within the numeric limits of the
value) identifies the card. It's possible to have a 7 byte IDs as well, but the 4 byte models are
far more common for Mifare Classic.

EEPROM Memory
Mifare Classic cards have either 1K or 4K of EEPROM memory. Each memory block can be
configured with different access conditions, with two seperate authentication keys present in
each block.

Mifare Classic cards are divided into section called sectors and blocks. Each "sector" has
individual access rights, and contains a fixed number of "blocks" that are controlled by these
access rights. Each block contains 16 bytes, and sectors contains either 4 blocks (1K/4K cards)
for a total of 64 bytes per sector, or 16 blocks (4K cards only) for a total of 256 bytes per
sector. The card types are organised as follows:

1K Cards - 16 sectors of 4 blocks each (sectors 0..15)
4K Cards - 32 sectors of 4 blocks each (sectors 0..31) and 8 sectors of 16 blocks each
(sectors 32..39)

4 Block Sectors
1K and 4K cards both use 16 sectors of 4 blocks each, with the bottom 1K of memory on the 4K
cards being organised identically to the 1K models for compatability reasons. These individual 4
block sectors (containing 64 byts each) have basic security features are can each be
configured with seperate read/write access and two different 6-byte authentication keys (the
keys can be different for each sector). Due to these security features (which are stored in the
last block, called the Sector Trailer), only the bottom 3 blocks of each sector are actually
available for data storage, meaning you have 48 bytes per 64 byte sector available for your
own use.

Each 4 block sector is organised as follows, with four rows of 16 bytes each for a total of 64-
bytes per sector. The first two sectors of any card are shown:

Sector Trailer (Block 3)
The sector trailer block contains the two secret keys (Key A and Key B), as well as the access
conditions for the four blocks. It has the following structure:

For more information in using Keys to access the clock contents, see Accessing Data Blocks
further below.

Sector Block Bytes Description
 ------ ----- ----- -----------
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1 3 [-------KEY A-------] [Access Bits] [-------KEY B-------] Sector Trailer
 2 [Data] Data
 1 [Data] Data
 0 [Data] Data

 0 3 [-------KEY A-------] [Access Bits] [-------KEY B-------] Sector Trailer
 2 [Data] Data
 1 [Data] Data
 0 [Manufacturer Data] Manufacturer Block

 Sector Trailer Bytes
 --
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 [Key A] [Access Bits] [Key B]

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 14 of 33

http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF1S70YYX.pdf

Data Blocks (Blocks 0..2)
Data blocks are 16 bytes wide and, depending on the permissions set in the access bits, can
be read from and written to. You are free to use the 16 data bytes in any way you wish. You can
easily store text input, store four 32-bit integer values, a 16 character uri, etc.

Data Blocks as "Value Blocks"
An alternative to storing random data in the 16 byte-wide blocks is to configure them as "Value
Blocks". Value blocks allow performing electronic purse functions (valid commands are: read,
write, increment, decrement, restore, transfer).

Each Value block contains a single signed 32-bit value, and this value is stored 3 times for data
integrity and security reasons. It is stored twice non-inverted, and once inverted. The last 4
bytes are used for a 1-byte address, which is stored 4 times (twice non-inverted, and twice
inverted).

Data blocks configured as "Value Blocks" have the following structure:

Manufacturer Block (Sector 0, Block 0)
Sector 0 is special since it contains the Manufacturer Block. This block contains the
manufacturer data, and is read-only. It should be avoided unless you know what you are doing.

16 Block Sectors
16 block sectors are identical to 4 block sectors, but with more data blocks. The same
structure described in the 4 block sectors above applies.

Accessing EEPROM Memory
To access the EEPROM on the cards, you need to perform the following steps:
1. You must retrieve the 4-byte NUID of the card (this can sometimes be 7-bytes long as well,

though rarely for Mifare Classic cards). This is required for the subsequent authentication
process.

2. You must authenticate the sector you wish to access according to the access rules defined
in the Sector Trailer block for that sector, by passing in the appropriate 6 byte
Authentication Key (ex. 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF for new cards).

3. Once authenication has succeeded, and depending on the sector permissions, you can
then read/write/increment/decrement the contents of the specific block. Note that you
need to re-authenticate for each sector that you access, since each sector can have it's
own distinct access keys and rights!

Note on Authentication
Before you can do access the sector's memory, you first need to "authenticate" according to
the security settings stored in the Sector Trailer. By default, any new card will generally be
configured to allow full access to every block in the sector using Key A and a value of 0xFF 0xFF
0xFF 0xFF 0xFF 0xFF. Some other common keys that you may wish to try if this doesn't work
are:

 Value Block Bytes
 --
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 [Value] [~Value] [Value] [A ~A A ~A]

 Sector Block Bytes Description
 ------ ----- ----- ----------
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 32 15 [-------KEY A-------] [Access Bits] [-------KEY B-------] Sector Trailer 32
 14 [Data] Data
 13 [Data] Data
 ...
 2 [Data] Data
 1 [Data] Data
 0 [Data] Data

 0XFF 0XFF 0XFF 0XFF 0XFF 0XFF
 0XD3 0XF7 0XD3 0XF7 0XD3 0XF7
 0XA0 0XA1 0XA2 0XA3 0XA4 0XA5
 0XB0 0XB1 0XB2 0XB3 0XB4 0XB5
 0X4D 0X3A 0X99 0XC3 0X51 0XDD
 0X1A 0X98 0X2C 0X7E 0X45 0X9A
 0XAA 0XBB 0XCC 0XDD 0XEE 0XFF
 0X00 0X00 0X00 0X00 0X00 0X00
 0XAB 0XCD 0XEF 0X12 0X34 0X56

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 15 of 33

Example of a New Mifare Classic 1K Card
The follow memory dump illustrates the structure of a 1K Mifare Classic Card, where the data
and Sector Trailer blocks can be clearly seen:

[--------------------------Start of Memory Dump--------------------------]
------------------------Sector 0-------------------------
Block 0 8E 02 6F 66 85 08 04 00 62 63 64 65 66 67 68 69 ?.of?...bcdefghi
Block 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 3 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 1-------------------------
Block 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 7 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 2-------------------------
Block 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 11 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 3-------------------------
Block 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 15 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 4-------------------------
Block 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 19 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 5-------------------------
Block 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 23 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 6-------------------------
Block 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 27 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 7-------------------------
Block 28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 29 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 31 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 8-------------------------
Block 32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 34 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 35 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 9-------------------------
Block 36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 37 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 38 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 39 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 10-------------------------
Block 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 43 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 11-------------------------
Block 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 45 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 46 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 47 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 12-------------------------
Block 48 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 51 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 13-------------------------
Block 52 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 53 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 55 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 14-------------------------
Block 56 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 57 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 58 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 59 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
------------------------Sector 15-------------------------
Block 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 61 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 62 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 63 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF ÿ.?iÿÿÿÿÿÿ
[---------------------------End of Memory Dump---------------------------]

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 16 of 33

MiFare Ultralight Cards
MiFare Ultralight cards typically contain 512 bits (64 bytes) of memory, including 4 bytes (32-
bits) of OTP (One Time Programmable) memory where the individual bits can be written but not
erased.

MF0ICU1 MiFare Ultralight Functional Specification (http://adafru.it/aSN)

MiFare Ultralight cards have a 7-byte UID that uniquely identifies the card.

EEPROM Memory
MiFare Ultralight cards have 512 bits (64 bytes) of EEPROM memory, including 4 byte (32 bits) of
OTP memory. Unlike Mifare Classic cards, there is no authentication on a per block level,
although the blocks can be set to "read-only" mode using Lock Bytes (described below).

EEPROM memory is organised into 16 pages of four bytes eachs, in the following order:

Here are the pages and blocks arranged in table format:

Lock Bytes (Page 2)
Bytes 2 and 3 of page 2 are referred to as "Lock Bytes". Each page from 0x03 and higher can
individually locked by setting the corresponding locking bit to "1" to prevent further write
access, effectively making the memory read only.

For more information on the lock byte mechanism, refer to section 8.5.2 of the datasheet
(referenced above).

OTP Bytes (Page 3)
Page 3 is the OTP memory, and by default all bits on this page are set to 0. These bits can be
bitwise modified using the MiFare WRITE command, and individual bits can be set to 1, but can
not be changed back to 0.

Data Pages (Page 4-15)
Pages 4 to 15 are can be freely read from and written to, provided there is no conflict with the
Lock Bytes described above.

After production, the bytes have the following default values:

Accessing Data Blocks

 Page Description
 ---- ------------
 0 Serial Number (4 bytes)
 1 Serial Number (4 bytes)
 2 Byte 0: Serial Number
 Byte 1: Internal Memory
 Byte 2..3: lock bytes
 3 One-time programmable memory (4 bytes)
 4..15 User memory (4 bytes)

 Page Block 0 Block 1 Block 2 Block 3
 ----- ---------------------------------------
 0 [Serial Number]
 1 [Serial Number]
 2 [Serial] - [Intern] - [Lock Bytes]
 3 [One Time Programmable Memory]
 4 [User Data]
 5 [User Data]
 6 [User Data]
 7 [User Data]
 8 [User Data]
 9 [User Data]
 10 [User Data]
 11 [User Data]
 12 [User Data]
 13 [User Data]
 14 [User Data]
 15 [User Data]

 Page Byte Values
 ---- ----------------------
 0 1 2 3
 4 0xFF 0xFF 0xFF 0xFF
 5..15 0x00 0x00 0x00 0x00

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 17 of 33

http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf

In order to access the cards, you must following two steps:
1. 'Connect' to a Mifare Ultralight card and retrieve the 7 byte UID of the card.
2. Memory can be read and written directly once a passive mode connection has been made.

No authentication is required for Mifare Ultralight cards.

Read/Write Lengths
For compatability reasons, "Read" requests to a Mifare Ultralight card will retrieve 16 bytes (4
pages) at a time (which corresponds to block size of a Mifare Classic card). For example, if you
specify that you want to read page 3, in reality pages 3, 4, 5 and 6 will be read and returned,
and you can simply discard the last 12 bytes if they aren't needed. If you select a higher page,
the 16 byte read will wrap over to page 0. For example, reading page 14 will actually return
page 14, 15, 0 and 1.

"Write" requests occur in pages (4 bytes), so there is no problem with overwriting data on
subsequent pages.

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 18 of 33

About the NDEF Format

NDEF (NFC Data Exchange Format)
The NFC Data Exchange Format (NDEF) is a standardised data format that can be used to
exchange information between any compatible NFC device and another NFC device or tag. The
data format consists of NDEF Messages and NDEF Records. The standard is maintained
by the NFC Forum and is freely available for consultation but requires accepting a license
agreement to download (http://adafru.it/aSA).

The NDEF format is used to store and exchange information like URIs, plain text, etc., using a
commonly understood format. NFC tags like Mifare Classic cards can be configured as NDEF
tags, and data written to them by one NFC device (NDEF Records) can be understood and
accessed by any other NDEF compatible device. NDEF messages can also be used to
exchange data between two active NFC devices in "peer-to-peer" mode. By adhering to the
NDEF data exchange format during communication, devices that would otherwise have no
meaningful knowledge of each other or common language are able to share data in an
organised, mutually understandable manner.

Some helpful app notes and white papers relating to NDEF are listed below:

NFC Data Exchange Format (NDEF) Technical Specification (http://adafru.it/aSA) (requires
accepting the license terms)
NFC Record Type Definition (RTD) Specification (http://adafru.it/aSA) (requires accepting the
license terms)
NXP White Paper - NFC Forum Type Tags (http://adafru.it/aSO)

NDEF Messages
NDEF Messages are the basic "transportation" mechanism for NDEF records, with each
message containing one or more NDEF Records.

NDEF Records
NDEF Records contain a specific payload, and have the following structure that identifies the
contents and size of the record:

Record Header (Byte 0)
The record header contains a number of important fields, including a 3-bit field that identifies
the type of record that follows (the Type Name Format or TNF):

TNF: Type Name Format Field
The Type Name Format or TNF Field of an NDEF record is a 3-bit value that describes the
record type, and sets the expectation for the structure and content of the rest of the record.
Possible record type names include:

Bit 7 6 5 4 3 2 1 0
------ ------ ------ ------ ------ ------ ------ ------
[MB] [ME] [CF] [SR] [IL] [TNF]

[TYPE LENGTH]

[PAYLOAD LENGTH]

[ID LENGTH]

[RECORD TYPE]

[ID]

[PAYLOAD]

 TNF Value Record Type
 --------- ---
 0x00 Empty Record
 Indicates no type, id, or payload is associated with this NDEF Record.
 This record type is useful on newly formatted cards since every NDEF tag
 must have at least one NDEF Record.

 0x01 Well-Known Record
 Indicates the type field uses the RTD type name format. This type name is used
 to stored any record defined by a Record Type Definition (RTD), such as storing
 RTD Text, RTD URIs, etc., and is one of the mostly frequently used and useful
 record types.

 0x02 MIME Media Record

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 19 of 33

http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nxp.com/acrobat_download2/other/identification/173110_NFC_Forum_Type_Tags_WhitePaper.pdf

IL: ID LENGTH Field
The IL flag indicates if the ID Length Field is preent or not. If this is set to 0, then the ID Length
Field is ommitted in the record.

SR: Short Record Bit
The SR flag is set to one if the PAYLOAD LENGTH field is 1 byte (8 bits/0-255) or less. This
allows for more compact records.

CF: Chunk Flag
The CF flag indicates if this is the first record chunk or a middle record chunk.

ME: Message End
The ME flag indicates if this is the last record in the message.MB: Message BeginThe MB flag
indicates if this is the start of an NDEF message.

Type Length
Indicates the length (in bytes) of the Record Type field. This value is always zero for certain
types of records defined with the TNF Field described above.

Payload Length
Indicates the length (in bytes) of the record payload. If the SR field (described above) is set to
1 in the record header, this value will be one byte long (for a payload length from 0-255 bytes).
If the SR field is set to 0, this value will be a 32-bit value occupying 4 bytes.

ID Length
Indicates the length in bytes of the ID field. This field is present only if the IL flag (described
above) is set to 1 in the record header.

Record Type
This value describes the 'type' of record that follows. The values of the type field must
corresponse to the value entered in the TNF bits of the record header.

Record ID
The value of the ID field if an ID is included (the IL bit in the record header is set to 1). If the IL bit
is set to 0, this field is ommitted.

Payload
The record payload, which will be exactly the number of bytes described in the Payload Length
field earlier.

Well-Known Records (TNF Record Type 0x01)
Probably the most useful record type is the "NFC Forum Well-Known Type" (TNF Type
0x01). Record types that adhere to the "Well-Defined" type are each described by something
called an RTD or Record Type Definition. Some of the current Well-Defined RTDs are:

URI Records (0x55/'U')
The "Well Known Type" for a URI record is 0x55 ('U'), and this record type can be used to store
a variety of useful information such as telephone numbers (tel:), website addresses, links
to FTP file locations, etc.

URI Records are defined in the document "URI Record Type Definition" from the NFC Forum, and
it has the following structure:

 0x02 MIME Media Record
 Indicates the payload is an intermediate or final chunk of a chunked NDEF Record

 0x03 Absolute URI Record
 Indicates the type field contains a value that follows the absolute-URI BNF
 construct defined by RFC 3986

 0x04 External Record
 Indicates the type field contains a value that follows the RTD external
 name specification

 0x05 Unknown Record
 Indicates the payload type is unknown

 0x06 Unchanged Record
 Indicates the payload is an intermediate or final chunk of a chunked NDEF Record

Name Offset Size Description
---- ------ ---- -----------
Identifier Code 0 1 byte See table below
URI Field 1 N bytes The rest of the URI (depending on byte 0 above)

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 20 of 33

The URI Identifier Code is use to shorten the URI length, and can have any of the following
values:

Following the URI Identifier Code is the URI Field. This field provides the URI as per RFC 3987
and contains the rest of the URI after the value corresponding to the URI Identifier is prepended
(unless the URI ID is 0x00, in which case the complete URI will be contained in the URI Field).

Test Records
To Do

Smart Poster Records
To Do

Example NDEF Records

Well Known Records

URI Record
An example of a URI record is shown in "Memory Dump of a Mifare Classic 1K Card with an NDEF
Record" below.

Text Record
To Do

Smartposter Record
To Do

Absolute URI Record

To Do

Using Mifare Classic Cards as an NDEF Tag
Mifare Classic 1K and 4K cards can be configured as NFC Forum compatible NDEF tags, but they
must be organised in a certain manner to do so. The requirements to make a Mifare Classic
card "NFC Forum compliant" are described in the following App Note from NXP:

AN1304 - NFC Type MIFARE Classic Tag Operation (http://adafru.it/aSP)

Value Protocol
----- --------
0x00 No prepending is done ... the entire URI is contained in the URI Field
0x01 http://www.
0x02 https://www.
0x03 http://
0x04 https://
0x05 tel:
0x06 mailto:
0x07 ftp://anonymous:anonymous@
0x08 ftp://ftp.
0x09 ftps://
0x0A sftp://
0x0B smb://
0x0C nfs://
0x0D ftp://
0x0E dav://
0x0F news:
0x10 telnet://
0x11 imap:
0x12 rtsp://
0x13 urn:
0x14 pop:
0x15 sip:
0x16 sips:
0x17 tftp:
0x18 btspp://
0x19 btl2cap://
0x1A btgoep://
0x1B tcpobex://
0x1C irdaobex://
0x1D file://
0x1E urn:epc:id:
0x1F urn:epc:tag:
0x20 urn:epc:pat:
0x21 urn:epc:raw:
0x22 urn:epc:
0x23 urn:nfc:

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 21 of 33

http://www.nxp.com/documents/application_note/AN1304.pdf

While the App Note above is the authoritative source on the matter, the following notes may
also offer a quick overview of the key concepts involved in using Mifare Classic cards as NFC
Forum compatible 'NDEF' tags:

Mifare Application Directory (MAD)
In order to form a relationship between the sector-based memory of a Mifare Classic card and
the individual NDEF records, the Mifare Application Directory (MAD) structure is used. The
MAD indicates which sector(s) contains which NDEF record. The definitive source of information
on the Mifare Application Directory is the following application note:

AN10787 - MIFARE Application Directory (MAD) (http://adafru.it/aSQ)

For reference sake, the two types of MADs (depending on the size of the card in question) are
defined below:

Mifare Application Directory 1 (MAD1)
MAD1 can be used in any Mifare Classic card regardless of the size of the EEPROM,
although if it is used with cards larger than 1KB only the first 1KB of memory will be accessible
for NDEF records.

The MAD1 is stored in the Manufacturer Sector (Sector 0x00) on the Mifare Classic card.

Mifare Application Directory 2 (MAD2)
MAD2 can only be used on Mifare Classic cards with more than 1KB of storage (Mifare
Classic 4K cards, etc.). It is NOT compatible with cards containing only 1KB of memory!

The MAD2 is stored in sectors 0x00 (the Manufacturer Sector) and 0x10.

MAD Sector Access
The sectors containing the MAD1 (0x00) and MAD2 (0x00 and 0x10) are protected with a KEY A
and KEY B (if you're not familiar with this concept, consult the Mifare Classic summary elsewhere
in the PN532/NFC wiki). To ensure that these sectors can be read by any application, the
following common KEY A should always be used:

The MAD sector may optionally be write-protected using KEY B if you wish to limit the ability of
customers to modify the card contents. The public KEY A will ensure that they can always read
the data.

Storing NDEF Messages in Mifare Sectors
NDEF messages/records may be stored in any sector of the Mifare card, other than the
sector(s) use by the MAD or sectors beyond the 1K range if a MAD1 table is used.

 When a sector is used to store NDEF records, it is referred to as an NFC Sector. As with the
MAD Sector(s) described above, these sectors must always be accessible in at least read-only
mode, and as such a common public KEY A also exists for NFC Sectors, though it is not the
same KEY A used in the MAD sector(s):

In order to store an NDEF Message on the Mifare Classic card, the message needs to be
wrapped inside something called a TLV Block. The basic structure of a TLV Block is described
below.

TLV Blocks
TLV is an abbreviation for three different fields: T for Tag Field, L for Length Field and V for
Value Field. A TLV Block consist of one or more bytes, depending on which of these three
fields is present. Note that the TLV Block will always be at least one byte since the T Field is
mandatory in every case.

Tag Field
The Tag Field (or T Field) is the only mandatory field, and uses a single-byte to identify the type
of TLV block accordingly to a pre-determined table of values:

 Public KEY A of MAD Sectors

 BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
 0xA0 0xA1 0xA2 0xA3 0xA4 0xA5

 Public KEY A of NFC Sectors

 BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
 0xD3 0xF7 0xD3 0xF7 0xD3 0xF7

TLV Block Types

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 22 of 33

http://www.nxp.com/documents/application_note/AN10787.pdf

Length Field
The Length Field (or L Field) contains the size (in bytes) of the value field. The Length Field can
be organised in two different ways, using either one or three bytes.

The one byte format simple contains a single byte value from 0x00..0xFF.

The three byte format consists of the following format:

Both the one byte and three byte format must be supported for NFC Forum and NDEF
compatability.

Value Field
The Value Field (or V Field) is only present if the Length Field (described above) is present and
not equal to 0x00. If the Length Field is not equal to 0, the Value Fields will contain N bytes of
data in the format indicated by the T Field above.

The value field is where the payload (an NDEF Message, for example) is stored.

Terminator TLV
The Terminator TLV is the last TLV block in the data area, and consist of a single byte: 0x0FE
(see the TLV Block Type table above). This TLV Block in mandatory.

Memory Dump of a Mifare Classic 1K Card with an NDEF Record

TLV Block Types

 Block Type Value Description
 ------------- ----- --------------------------------------
 NULL 0x00 These blocks should be ignored
 NDEF Message 0x03 Block contains an NDEF message
 Proprietary 0xFD Block contains proprietary information
 Terminator 0xFE Last TLV block in the data area

 Byte 0: Always 0xFF to indicate that we are using the three byte format
 Byte 1..2: Can be a value between 0x00FF and 0xFFFE

[Start of Memory Dump]
------------------------Sector 0-------------------------
Block 0 3E 39 AB 7F D3 88 04 00 47 41 16 57 4D 10 34 08 >9«�Ó?..GA.WM.4.
Block 1 14 01 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 ...á.á.á.á.á.á.á
Block 2 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 .á.á.á.á.á.á.á.á
Block 3 00 00 00 00 00 00 78 77 88 C1 00 00 00 00 00 00 xw?Á......
------------------------Sector 1-------------------------
Block 4 00 00 03 11 D1 01 0D 55 01 61 64 61 66 72 75 69 Ñ..U.adafrui
Block 5 74 2E 63 6F 6D FE 00 00 00 00 00 00 00 00 00 00 t.comþ..........
Block 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 7 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 2-------------------------
Block 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 11 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 3-------------------------
Block 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 15 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 4-------------------------
Block 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 19 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 5-------------------------
Block 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 23 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 6-------------------------
Block 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 27 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 7-------------------------
Block 28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 29 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 31 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 8-------------------------
Block 32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 34 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 35 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 9-------------------------
Block 36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 37 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 23 of 33

NDEF Records
The above example contains two records, both located in sector 1 (sector 0 contains the
MAD).

Record 1
The first record on the card can be identified by looking at the first byte of block 4 in sector 1.

Every record on the Mifare card starts with the TLV Block (described above), and the first
byte of the TLV Block (the Tag Field) indicates that this is a NULL Block type (value 0x00).
The second byte is the Length Field, and is 0. Since there is no payload for this record (Length
= 0), the third byte of the TLV block is not present (the Value Field).

This record was likely inserted when the card was first formatted to ensure that at least one
record is present.

Record 2
The second record on the card starts at byte 0x02 of block 4 and continues into block 5.

Starting with the TLV Block data in the first two bytes, we can determine the following:

This indicates to us that the record contains an NDEF Message (value 0x03), and that the
message is 17 bytes long (0x11 in hexadecimal = 17 in decimal value). This means that our
NDEF message is contained in the next 17 bytes (04:04..05:04). The NDEF record can then be
analysed as follows:

Block 37 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 38 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 39 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 10-------------------------
Block 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 43 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 11-------------------------
Block 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 45 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 46 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 47 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 12-------------------------
Block 48 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 51 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 13-------------------------
Block 52 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 53 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 55 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 14-------------------------
Block 56 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 57 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 58 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 59 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
------------------------Sector 15-------------------------
Block 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 61 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 62 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Block 63 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 �.?@......
[End of Memory Dump]

Block 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Char Value
----- --- ------------
04 00 00 ..

Block 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Char Value
----- --- ------------
04 03 11 D1 01 0D 55 01 61 64 61 66 72 75 69 Ñ..U.adafrui
05 74 2E 63 6F 6D t.com

Byte(s) Value Description
------- ----- -----------
04:02 0x03 Field Type (0x03 = NDEF Message)
04:03 0x11 Length Field (17 bytes)

Byte(s) Value Description
------- ----- -----------
04:04 0xD1 This byte is the **NDEF Record Header**, and indicates that this is
 an NFC Forum Well Known Record (0x01 in the first 3 bits),
 and that this is the first and last record (MB=1, ME=1),

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 24 of 33

TLV Terminator

The final byte (block 5, byte 5), with the value 0xFE, is the TLV Terminator and indicates that
this is the end of the TLV Block.

 and that this is the first and last record (MB=1, ME=1),
 and that this is a short record (SR = 1) meaning the payload
 length is less than or equal to 255 chars (len=one byte).
 TNF = 0x01 (NFC Forum Well Known Type)
 IL = 0 (No ID present, meaning there is no ID Length or ID Field either)
 SR = 1 (Short Record)
 CF = 0 (Record is not 'chunked')
 ME = 1 (End of message)
 MB = 1 (Beginning of message)
04:05 0x01 This byte is the **Type Length** for the Record Type Indicator
 (see above for more information), which is 1 byte (0x55/'U' below)
04:06 0x0D This is the payload length (13 bytes)
04:07 0x55 Record Type Indicator (0x55 or 'U' = URI Record)
04:08 0x01 This is the **start of the record payload**, which contains the
 URI Identifier ("http://www.") since this is a URI Well-Defined
 Record Type (see Well-Defined Records above). This will be
 prepended to the rest of the URI that follows in the rest of the
 message payload
04:09..05:04 ... The remainder of the URI ("adafruit.com"), which combined with the
 pre-pended value from byte 04:08 yields: http://www.adafruit.com

Block 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Char Value
----- --- ------------
05 FE þ

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 25 of 33

Using with LibNFC

Using the PN532 Breakout Boards with libnfc
libnfc (http://adafru.it/aSR) is a mature, cross-platform, open-source NFC library that can be
easily configured to work with the PN532 Breakout Board. While Linux is probably the easiest
platform to use libnfc with, it can be configured for the Mac and Windows as well, though you
may need to dig around on the libnfc Community Forums for some specific details on compiling
.dlls for Windows, etc.

If you want to test the PN532 Breakout Board out with libnfc, this simple tutorial should walk you
through the absolute basics of compiling and configuring libnfc, and using some of the canned
example SW included in the library.

libnfc In Linux (Ubuntu 10.10 used in this example)

Step One: Download libnfc
Download the latest version of libnfc from Google Code (http://adafru.it/aSS) (ex. "libnfc-
1.4.1.tar.gz") and extract the contents of the file as follows:

Step Two: Configure libnfc for PN532 and UART
libnfc currently only supports communication over UART, using any inexpensive USB to UART
adapter like the FTDI Friend or a TTL FTDI cable. Before compiling, however, you will need to
configure libnfc to include support for UART and the PN532 chipset, which can be done with the
following commmand (executing in the folder where the above archive was unzipped):

Note: If you also wish to include debug output, you can add the '–enable-serial-autoprobe' flag
(minus the single quotes) to the configure options

Step Three: Build and install libnfc
You can build and install libnfc with the following three commands, also run from the folder
where the original archive was unzipped:

Step Four: Check for installed devices
Now that libnfc is (hopefully) built and installed, you can run the 'nfc-list' example to try to
detect an attached NFC board. Make sure the board is connected to the FTDI or USB/UART

This is only for using the PN532 breakout with an FTDI cable or FTDI Friend to aThis is only for using the PN532 breakout with an FTDI cable or FTDI Friend to a
proper computer. You cannot run LIbNFC on an Arduino or other microcontrollerproper computer. You cannot run LIbNFC on an Arduino or other microcontroller

 $ wget http://libnfc.googlecode.com/files/libnfc-x.x.x.tar.gz
 $ tar -xvzf libnfc-x.x.x.tar.gz
 $ cd libnfc-x.x.x

 $./configure --with-drivers=pn532_uart --enable-serial-autoprobe

 $ make clean
 $ make
 $ make install

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 26 of 33

http://www.libnfc.org/
http://code.google.com/p/libnfc/downloads/list

adapter, and that it is connected to your PC, and run the following commands:

This should list the devices that were detected

Step Five: Poll for an ISO14443A (Mifare, etc.) Card
Next, you can use the 'nfc-poll' example to wait 30 seconds for an ISO14443A card or tag and
display some basic information about this card. In the examples folder that we changed to
above, run the following command:

This should give you some basic information on any card that entered the magnetic field within
the specified delay.

libnfc With Mac OSX Lion

scott-42 was kind of enough to post some tips on getting libnfc working on a Mac using an FTDI
adapter. A couple simple changes to the code were required (as of v1.6.0-rc1), with the
details here (http://adafru.it/aP1).

Keeping in mind the code changes mentionned above, the following steps should get libnfc
compiling and working via an FTDI type adapter and UART on Lion (using libnfc 1.6.0_rc1):

Download and build libnfc and configure if for PN532 UART (making the
code changes above before running make):

If everything worked out, switch to the examples folder and see if you
can find the PN532 and wait for an appropriate tag:

There are some dependencies to get libnfc running, but since it isn't an Adafruit project and we
can't really support it directly ourselves, you will probably have better luck looking at the libnfc
forums (http://adafru.it/aST) for Mac support. There are a few active users developping on the
Mac.

 $ cd examples
 $./nfc-list

 $./nfc-poll

 wget http://libnfc.googlecode.com/files/libnfc-1.6.0-rc1.tar.gz
 tar -xvzf libnfc-1.6.0-rc1.tar.gz
 cd libnfc-1.6.0-rc1
 ./configure --with-drivers=pn532_uart --enable-serial-autoprobe
 sudo make
 sudo make install

 cd examples
 Kevins-Mac-mini:examples kevin$./nfc-poll
 /Users/kevin/libnfc-1.6.0-rc1/examples/.libs/nfc-poll uses libnfc 1.6.0-rc1 (r1326)
 NFC reader: pn532_uart:/dev/tty.usbserial-FTE5WWPB - PN532 v1.6 (0x07) opened
 NFC device will poll during 30000 ms (20 pollings of 300 ms for 5 modulations)
 ISO/IEC 14443A (106 kbps) target:
 ATQA (SENS_RES): 00 04
 UID (NFCID1): 3e b9 6e 66
 SAK (SEL_RES): 08

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 27 of 33

http://forums.adafruit.com/viewtopic.php?f=19&t=22085#p115684
http://www.libnfc.org/community/

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 28 of 33

FAQ

Some of the more common questions on the forums related to the PN532 NFC/RFID
Breakout (http://adafru.it/364) and NFC Shield (http://adafru.it/789).

Can I read or write to Mifare tags with the PN532 and Adafruit Libraries?
Absolutely! The Adafruit libraries include functions to authenticate, read and write individual

blocks to Mifare Classic cards. Before you can read or write a block you need to authenticate it
with the appropriate key, and once the block is authenticated you can read and write to your
hearts content)!

For example, the key functions in the I2C library (http://adafru.it/aSW) (which was written to go
along with the NFC shield (http://adafru.it/789) since it defaults to I2C) are:

Absolutely! The Adafruit libraries include functions to authenticate, read and write individual
blocks to Mifare Classic cards. Before you can read or write a block you need to
authenticate it with the appropriate key, and once the block is authenticated you can read
and write to your hearts content)!

For example, the key functions in the I2C library (http://adafru.it/aSW) (which was written to go along with
the NFC shield<span class="pdf-
short-link"> (http://adafru.it/789) since it defaults to I2C) are:

This is all you need to start reading and writing data, and you can verify the data using one of
many Android applications that support working with Mifare cards (a search for NFC will turn up
plenty).

What level of NDEF support is included in the libraries?
At the moment, all NDEF (http://adafru.it/aXr) features are experimental and incomplete. Only

very basic test code has been written to format a card for NDEF messages in a way that any
NFC-enabled Android phone should be able to understand it, and it was written and an
extremely simple proof of concept.

We would like to improve NDEF support for Mifare tags in the near future and some initial
planning has gone into this, but at the moment our suggestion is to stick to plain text and
'vanilla' Mifare Classic (http://adafru.it/aXs) reads and writes. You can read and write Mifare
Classic and Mifare Ultralight blocks from Android, and you don't need to used the more
complicated NDEF standard to simply pass data back and forth via a Mifare Classic or Ultralight
card.

At the moment, all <a href="http://learn.adafruit.com/adafruit-pn532-rfid-
nfc/ndef">NDEF (http://adafru.it/aXr) features
are experimental and incomplete. Only very basic test code has been written to format a
card for NDEF messages in a way that any NFC-enabled Android phone should be able to
understand it, and it was written and an extremely simple proof of concept.

We
would like to improve NDEF support for Mifare tags in the near future and some initial
planning has gone into this, but at the moment our suggestion is to stick to plain text and
'vanilla' <a href="http://learn.adafruit.com/adafruit-pn532-rfid-nfc/mifare" title="Link:
http://learn.adafruit.com/adafruit-pn532-rfid-nfc/mifare">Mifare Classic (http://adafru.it/aXs) reads and writes. You can read and
write Mifare Classic and Mifare Ultralight blocks from Android, and you don't need to used
the more complicated NDEF standard to simply pass data back and forth via a Mifare Classic
or Ultralight card.

Does the PN532 support peer to peer communication to talk with my smartphone?
Yes, the PN532 supports peer to peer communication, but the SW support for this isn't

implemented in the Adafruit libraries.

Peer to peer communication with Android is possible, for example, but the actual
implementation is quite complicated on the PN532 side. You need to go through a lot of SW
layers to communicate with Android in a way that it understands -- it would require developing a
full NDEF stack for the messages, SNEP and LLCP stacks, etc. -- which is unfortunately well
beyond the scope of what we can offer on a development board at this price point.

All of the HW requirements for this are met with the Adafruit shield and breakout board, but the
stack implementation is non trivial and would require us to charge a significant premium for
these boards if we implemented this.

We've focused our energy on providing a reliable, proven, properly-tuned HW reference, and

uint8_t mifareclassic_AuthenticateBlock (uint8_t * uid, uint8_t uidLen,
 uint32_t blockNumber, uint8_t keyNumber,
 uint8_t * keyData);
uint8_t mifareclassic_ReadDataBlock (uint8_t blockNumber, uint8_t * data);
uint8_t mifareclassic_WriteDataBlock (uint8_t blockNumber, uint8_t * data);

Note: Please use the limited NDEF code with care. Note: Please use the limited NDEF code with care. Formatting cards for NDEFFormatting cards for NDEF
support is currently a one way operation, and should only be performed on cardssupport is currently a one way operation, and should only be performed on cards
you can dedicate to NDEF use.you can dedicate to NDEF use.

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 29 of 33

http://www.adafruit.com/products/364
http://www.adafruit.com/products/789
https://github.com/adafruit/Adafruit_NFCShield_I2C
http://www.adafruit.com/products/789
http://learn.adafruit.com/adafruit-pn532-rfid-nfc/ndef
http://learn.adafruit.com/adafruit-pn532-rfid-nfc/mifare

enough of a SW building block to get everyone started, but there are too many holes to fill in to
cover everything NFC can do with a development board at this price point.

For an example of communicating with a phone via NFC, though, have a look at "Talking With
Your Arduino via NFC on Blackberry (http://adafru.it/aXt)" which uses the Adafruit NFC Shield.
The SW layers required for NFC-based P2P communication with a Blackberry device are
apparently much lower than on Android.

Yes, the PN532 supports peer to peer communication, but the SW support for this isn't
implemented in the Adafruit libraries.

Peer to peer communication with Android is
possible, for example, but the actual implementation is quite complicated on the PN532 side.
You need to go through a lot of SW layers to communicate with Android in a way that it
understands -- it would require developing a full NDEF stack for the messages, SNEP and
LLCP stacks, etc. -- which is unfortunately well beyond the scope of what we can offer on a
development board at this price point.

All of the HW requirements for this are met
with the Adafruit shield and breakout board, but the stack implementation is non trivial and
would require us to charge a significant premium for these boards if we implemented this.

We've focused our energy on providing a reliable, proven, properly-tuned HW
reference, and enough of a SW building block to get everyone started, but there are too
many holes to fill in to cover everything NFC can do with a development board at this price
point.

For an example of communicating with a phone via NFC, though, have a look
at "<a href="http://devblog.blackberry.com/2012/12/talking-with-your-arduino-via-nfc-on-
blackberry/">Talking With Your Arduino via NFC on Blackberry<span class="pdf-short-
link"> (http://adafru.it/aXt)" which uses the Adafruit NFC Shield. The SW layers
required for NFC-based P2P communication with a Blackberry device are apparently much
lower than on Android.

Does the PN532 support tag emulation?
Yes, but in reality it's impossible to implement since it requires an external 'secure

element (http://adafru.it/aXu)' that is very difficult to source (under export control and general
NDA from the few manufacturers of them). If you can get one we'd love to see it, though!

Yes, but in reality it's impossible to implement since it requires an external 'secure
element (http://adafru.it/aXu)' that is very
difficult to source (under export control and general NDA from the few manufacturers of
them). If you can get one we'd love to see it, though!

Can the PN532 read Tag-It tags from TI?
No. The PN532 is designed to be used with ISO14443 (http://adafru.it/aSU) tags, with Mifare

Classic probably the most common general-purpose tag type in use. For more information on
supported tags
seehttp://www.libnfc.org/documentation/hardware/tags/iso14443 (http://adafru.it/aSV) or
search for information on the common Mifare tag family based on ISO1443A.

No. The PN532 is designed to be used with ISO14443<span class="pdf-short-
link"> (http://adafru.it/aSU) tags, with Mifare Classic probably the most common
general-purpose tag type in use. For more information on supported tags seehttp://www.libnfc.org/documentation/hardware/tags/iso14443 (http://adafru.it/aSV) or search for information on the
common Mifare tag family based on ISO1443A.

Can I set a delay calling readPassiveTargetID()?
Note: This question only applies to the I2C Library (http://adafru.it/aSW). The SPI

library (http://adafru.it/aSX) doesn't handle the timing the same way.

readPassiveTargetID() intentionally waits around in a blocking delay until a card enters the
magnetic field. The reason for this blocking delay is to ensure a well-understood
command/response flow. Once the magnetic field is activated and a read request is sent via
readPassiveTargetID, you can keep sending new commands to the PN532, but the moment a
card or tag enters the field, the PN532 will send a response to the initial read request, even if it's
in the middle of some other response or activity. To avoid having to debug this in SW, a
blocking delay was implemented to keep the command/response pattern as clear as possible.

As a workaround to this blocking-delay limitation,
setPassiveActivationRetries(maxRetries) was added to the latest NFC libraries to allow
you to set a specific timeout after read requests.

By default, the PN532 will wait forever for a card to enter the field. By specifying a fixed number
of retries via MxRtyPassiveActivation (see UM section 7.3.1 describing the
RFConfiguration register, specifically CfgItem 5) the PN532 will abort the read request after
specified number of attempts, and you can safely send new commands without worrying about
mixing up response frames. To wait forever, set MxRtyPassiveActivation to 0xFF. To timeout
after a fixed number of retries, set MxRtyPassiveActivation to anything less than 0xFF.

Example Sketch:
Note: This question only applies to the I2C Library (http://adafru.it/aSW). The SPI library<span class="pdf-short-
link"> (http://adafru.it/aSX) doesn't handle the timing the same
way.

readPassiveTargetID() intentionally waits around in a blocking delay
until a card enters the magnetic field. The reason for this blocking delay is to ensure a well-
understood command/response flow. Once the magnetic field is activated and a read
request is sent via readPassiveTargetID, you can keep sending new commands to the

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 30 of 33

http://devblog.blackberry.com/2012/12/talking-with-your-arduino-via-nfc-on-blackberry/
http://nearfieldcommunication.com/developers/nfc-architecture/
http://en.wikipedia.org/wiki/ISO/IEC_14443
http://www.libnfc.org/documentation/hardware/tags/iso14443
https://github.com/adafruit/Adafruit_NFCShield_I2C
https://github.com/adafruit/Adafruit-PN532

PN532, but the moment a card or tag enters the field, the PN532 will send a response to the
initial read request, even if it's in the middle of some other response or activity. To avoid
having to debug this in SW, a blocking delay was implemented to keep the
command/response pattern as clear as possible.

As a workaround to this
blocking-delay limitation, setPassiveActivationRetries(maxRetries) was
added to the latest NFC libraries to allow you to set a specific timeout after read
requests.

By default, the PN532 will wait forever for a card to enter the field. By
specifying a fixed number of retries via MxRtyPassiveActivation (see UM
section 7.3.1 describing the RFConfiguration register, specifically
CfgItem 5) the PN532 will abort the read request after specified number of attempts, and you
can safely send new commands without worrying about mixing up response frames. To wait
forever, set MxRtyPassiveActivation to 0xFF. To timeout after a fixed number of retries, set
MxRtyPassiveActivation to anything less than 0xFF.

Example
Sketch:

Hey wait ... isn't there something funny with the SVDD pin?
Indeed, good eye! Unfortunately, both v1.0 and v1.3 of the breakout boards have a problem

on the schematic. SVDD is connected directly to VDD, but should be left floating since it is used
to power secure modules. This has no effect on the functionality of the boards, but does cause
some extra current to be drawn. It will be fixed on the next revision of the board, but if you

#include <Wire.h>
#include <Adafruit_NFCShield_I2C.h>

#define IRQ (2)
#define RESET (3) // Not connected by default on the NFC Shield

Adafruit_NFCShield_I2C nfc(IRQ, RESET);

void setup(void) {
 Serial.begin(115200);
 Serial.println("Hello!");

 nfc.begin();

 uint32_t versiondata = nfc.getFirmwareVersion();
 if (! versiondata) {
 Serial.print("Didn't find PN53x board");
 while (1); // halt
 }

 // Got ok data, print it out!
 Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);
 Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);
 Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);

 // Set the max number of retry attempts to read from a card
 // This prevents us from waiting forever for a card, which is
 // the default behaviour of the PN532.
 nfc.setPassiveActivationRetries(0xFF);

 // configure board to read RFID tags
 nfc.SAMConfig();

 Serial.println("Waiting for an ISO14443A card");
}

void loop(void) {
 boolean success;
 uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
 uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)

 // Wait for an ISO14443A type cards (Mifare, etc.). When one is found
 // 'uid' will be populated with the UID, and uidLength will indicate
 // if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
 success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, &uid[0], &uidLength);

 if (success) {
 Serial.println("Found a card!");
 Serial.print("UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes");
 Serial.print("UID Value: ");
 for (uint8_t i=0; i < uidLength; i++)
 {
 Serial.print(" 0x");Serial.print(uid[i], HEX);
 }
 Serial.println("");
 // Wait 1 second before continuing
 delay(1000);
 }
 else
 {
 // PN532 probably timed out waiting for a card
 Serial.println("Timed out waiting for a card");
 }
}

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 31 of 33

require the use of the secure modules (rare), you can simply cut the trace to the left of C22,
which is the cap connected to SVDD (just follow the trace straight up from pin 37).

Indeed, good eye! Unfortunately, both v1.0 and v1.3 of the breakout boards have a
problem on the schematic. SVDD is connected directly to VDD, but should be left floating
since it is used to power secure modules. This has no effect on the functionality of the
boards, but does cause some extra current to be drawn. It will be fixed on the next revision
of the board, but if you require the use of the secure modules (rare), you can simply cut the
trace to the left of C22, which is the cap connected to SVDD (just follow the trace straight up
from pin 37).

© Adafruit Industries http://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 32 of 33

Downloads

SPI library is available from github (http://adafru.it/aSX)
I2C library is available from github (http://adafru.it/aSW)

Schematic (we'll have files up soon) (http://adafru.it/aSY)

© Adafruit Industries Last Updated: 2013-02-01 01:30:27 AM EST Page 33 of 33

https://github.com/adafruit/Adafruit-PN532
https://github.com/adafruit/Adafruit_NFCShield_I2C
http://www.adafruit.com/datasheets/PN532_Breakout_Schematic_v1.0.pdf

	Guide Contents
	Overview
	Breakout Wiring
	Wiring the Breakout for SPI

	Shield Wiring
	Using the Adafruit NFC Shield with I2C

	Using with the Arduino Leonardo
	Arduino Library
	Which Library?
	I2C Library FOR USE WITH THE SHIELD ONLY
	SPI Library FOR USE WITH THE BREAKOUT BOARD ONLY
	Testing MiFare

	About NFC
	NFC (Near Field Communication)
	Passive Communication: ISO14443A Cards (Mifare, etc.)
	Active Communication (Peer-to-Peer)
	NFC Data Exchange Format (NDEF)
	Reading

	MiFare Cards & Tags
	MiFare Classic Cards
	EEPROM Memory
	4 Block Sectors
	16 Block Sectors
	Accessing EEPROM Memory
	Note on Authentication
	Example of a New Mifare Classic 1K Card
	MiFare Ultralight Cards
	EEPROM Memory
	Lock Bytes (Page 2)
	OTP Bytes (Page 3)
	Data Pages (Page 4-15)
	Accessing Data Blocks
	Read/Write Lengths

	About the NDEF Format
	NDEF (NFC Data Exchange Format)
	NDEF Messages
	NDEF Records
	Record Header (Byte 0)
	Type Length
	Payload Length
	ID Length
	Record Type
	Record ID
	Payload
	Well-Known Records (TNF Record Type 0x01)
	URI Records (0x55/'U')
	Test Records
	Smart Poster Records
	Example NDEF Records
	Using Mifare Classic Cards as an NDEF Tag
	Mifare Application Directory (MAD)
	Mifare Application Directory 1 (MAD1)
	Mifare Application Directory 2 (MAD2)
	MAD Sector Access
	Storing NDEF Messages in Mifare Sectors
	TLV Blocks
	Memory Dump of a Mifare Classic 1K Card with an NDEF Record
	NDEF Records

	Using with LibNFC
	Using the PN532 Breakout Boards with libnfc

	libnfc In Linux (Ubuntu 10.10 used in this example)
	Step One: Download libnfc
	Step Two: Configure libnfc for PN532 and UART
	Step Three: Build and install libnfc
	Step Four: Check for installed devices
	Step Five: Poll for an ISO14443A (Mifare, etc.) Card

	libnfc With Mac OSX Lion
	Download and build libnfc and configure if for PN532 UART (making the code changes above before running make):
	If everything worked out, switch to the examples folder and see if you can find the PN532 and wait for an appropriate tag:

	FAQ
	Downloads

